Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2849204.v1

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are a fatal pathogen resulting in substantial morbidity and mortality, and posing a great threat to human health with epidemics and pandemics. Methods: Next-generation sequencing (NGS) was performed to investigate the SARS-CoV-2 genomic characterization. Phylogenetic analysis of SARS-CoV-2 genomes was used to probe the evolutionary. Homology protein structure modelling was done to explore potential effect of the mutations. Results: The eighty genome sequences of SARS-CoV-2 obtained from the thirty-nine patients with COVID-19. A novel variant with mutation H625R concomitant with S50L in spike glycoprotein had been identified. Phylogenetic analysis revealed that SARS-CoV-2 variants belong to several distinct lineages. Homology modelling indicated that variant with mutation H625R and S50L increases flexibility of S1 subunit. Conclusions: SARS-CoV-2 genomes are constantly evolving by accumulation of point mutations. The amino acid H625R in combination with S50L may have a significant impact on the interaction between spike glycoprotein and ACE2.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL